
Implementing an arbitrary reversible logic gate

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2005 J. Phys. A: Math. Gen. 38 3555

(http://iopscience.iop.org/0305-4470/38/16/007)

Download details:

IP Address: 171.66.16.66

The article was downloaded on 02/06/2010 at 20:09

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/38/16
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 38 (2005) 3555–3577 doi:10.1088/0305-4470/38/16/007

Implementing an arbitrary reversible logic gate

Yvan Van Rentergem1, Alexis De Vos1 and Leo Storme2,3

1 Imec v.z.w. and Vakgroep elektronika en informatiesystemen, Universiteit Gent,
Sint Pietersnieuwstraat 41, B-9000 Gent, Belgium
2 Vakgroep zuivere wiskunde en computeralgebra, Universiteit Gent, Krijgslaan 281,
B-9000 Gent, Belgium

Received 14 September 2004, in final form 25 February 2005
Published 6 April 2005
Online at stacks.iop.org/JPhysA/38/3555

Abstract
The (2w)! reversible logic gates of width w, i.e. reversible logic gates with w

inputs and w outputs, together with the action of cascading, form a group R. We
define a subgroup K, consisting of the SWITCHED gates. There are [(2w−1)!]2

such gates. They partition the group R into 2w−1 +1 double cosets. This allows
us to decompose an arbitrary reversible gate into the cascade of three gates: a
SWITCHED gate, an upside-down simple control gate and a second SWITCHED
gate. We present an algorithm to perform this factorization, and thus provide
a method of implementing an arbitrary reversible gate into hardware. The
algorithm can be used to automate the implementation of a reversible function
in future (c-MOS) technologies, realizing low-cost computing.

PACS numbers: 02.10.Ab, 02.20.−a, 03.67.Lx, 84.30.Bv

1. Introduction

Reversible computing [1] is useful both in classical and in quantum computing. Originally,
Landauer and Bennett [2–5] introduced reversible computing in order to avoid the generation
of the amount kT log(2) of heat, each time a bit of information is lost during a computational
process. By avoiding any energy loss associated with logical irreversibilities, classical
reversible circuits can, in principle, be made asymptotically lossless [6, 7], in the limit of
arbitrarily large time delays. Conversely, reversible computing can be applied as part of a
quantum computer [8–11]. Indeed, most gate libraries for quantum computation consist, for a
large part, of (classical) reversible building blocks [12]. In the present paper, we will focus on
the application of reversible computing in low-power digital electronics. Because of frictional
phenomena, each computational step is accompanied by a heat generation Q of the order
CV 2

t , where C is the capacitance of the logic gate and Vt the threshold voltage of its switches
(e.g. its transistors). We can write C as ε0εA/t where ε0 is the vacuum permittivity and ε is
the dielectric constant of the insulating material. Furthermore, A is the surface area of the

3 The third author thanks the Fund for Scientific Research—Flanders (Belgium) for a Research Grant.

0305-4470/05/163555+23$30.00 © 2005 IOP Publishing Ltd Printed in the UK 3555

http://dx.doi.org/10.1088/0305-4470/38/16/007
http://stacks.iop.org/ja/38/3555

3556 Y Van Rentergem et al

logic gate and t the dielectric’s thickness. With present-day orders of magnitude (ε ≈ 5, A ≈
(100 nm)2, t ≈ 10 nm, and Vt ≈ 0.3 V), we get Q ≈ 4 ×10−18 J, i.e. 4 attojoules. This is
three orders of magnitude larger than the Landauer quantum, which (at T = 300 K) amounts
to 3 ×10−21 J, i.e. 3 zeptojoules. If Moore’s law will continue to be valid in the near future, a
further reduction of Q will make the Landauer effect non-negligible and will make reversible
computer architectures attractive.

For the study of reversible computing, we consider all reversible logic gates of width
w, i.e. with w binary inputs A1, A2, . . . , Aw and w binary outputs P1, P2, . . . , Pw. The
truth table of such logic gate corresponds to a permutation of the 2w rows (0, 0, . . . , 0, 0),

(0, 0, . . . , 0, 1), . . . , (1, 1, . . . , 1, 1) of the table. Therefore, there is a one-to-one relationship
between the words (A1, A2, . . . , Aw) and the words (P1, P2, . . . , Pw). This allows us to write
the inverse truth table of a given reversible truth table. The inverse logic gate ‘undoes’ what the
original gate does. In other words, whereas a given reversible gate is calculating ‘forwards’,
its inverse calculates ‘backwards’.

Each reversible logic gate having its own inverse, the reversible logic gates form a
group (which we will denote by R) isomorphic to the symmetric group S2w . The order of this
group is

r(w) = (2w)!.

Given a particular reversible gate (either by its truth table or by its permutation),
the question arises how to implement it into hardware. We distinguish only two kinds of
hardware:

• ‘active’ devices, in particular switches, and
• ‘passive’ devices, in particular interconnections, i.e. wirings.

We will assume that the passive devices are free of cost, whereas the active ones have a price.
For example in low-power electronics, an interconnection is merely a metal wire, whereas a
switch needs two silicon transistors. There are basically two reasons for these simplifying
assumptions:

• First, there is the hardware cost, i.e. fabrication cost of the chip, which is proportional to
the silicon area. Simple metal wirings need less silicon area than transistors.

• Next, there is the operation cost, i.e. the power cost during use of the chip. A
metal interconnection can be approximated by an RLC transmission line. According
to the Athas principle [13], the power dissipation (and thus the heat generation) per
computational step within such line can be made arbitrarily small, provided we accept
sufficient delay time. A transistor however, because of its threshold voltage Vt cannot be
regarded as an ideal switch with an RC load. Therefore, the heat dissipation within it is
at least CV 2

t , however slowly we perform the elementary computation step.

In modern and future deep-submicron logic, interconnections become more significant, both
in length (and thus in fabrication cost) and in power cost. However, it turns out that the number
of metal wires is closely related to the number of transistors. In pass-transistor logic design,
the number of interconnections is proportional to the number of transistors. Therefore, even in
the deep-submicron world (i.e. the nano world), the transistor count is a valuable cost function.

We will assume three axioms:

• Each Boolean variable X is accompanied by its inverse X (= NOT X). We say we use
‘dual line logic’.

• A variable and its inverse can be interchanged or swapped (at no cost).
• Two different variables X and Y can be interchanged (at no cost).

Implementing an arbitrary reversible logic gate 3557

a

b

A1 P1

P2

P3

2A

3A

A1 P1

P2

P3

2A

3A

1A 1P

3A P3

2A P2

Figure 1. A selective gate of width 3: (a) implementation, (b) schematic.

Table 1. Truth table of two reversible gates of width 3: (a) selective gate, (b) simple control gate.

(a) Selective gate (b) Simple control gate

A1A2A3 P1P2P3 A1A2A3 P1P2P3

0 0 0 1 0 1 0 0 0 0 0 1
0 0 1 1 1 1 0 0 1 0 0 0
0 1 0 1 0 0 0 1 0 0 1 1
0 1 1 1 1 0 0 1 1 0 1 0
1 0 0 0 0 1 1 0 0 1 0 0
1 0 1 0 1 1 1 0 1 1 0 1
1 1 0 0 0 0 1 1 0 1 1 1
1 1 1 0 1 0 1 1 1 1 1 0

As a consequence, all selective reversible gates can be implemented at no cost. We call a
reversible gate selective iff each of its outputs Pj equals either an input Ak or the inverse Am

of an input. Table 1 shows an example: the truth table of the selective gate obeying P1 = A1,

P2 = A3, and P3 = A2. We see how the output rows are the permutation (1, 7, 4, 6)
(2, 5, 3, 8) of the input rows. Figure 1 shows its hardware implementation, as well as its
short-hand schematic. Note that a small cross indicates an inversion or NOT gate.

Thus the implementation (or synthesis) problem is solved for these gates. They form a
subgroup of order

i(w)e(w) = 2ww!.

Indeed, this subgroup of R is the semi-direct product of the subgroup of inverters and the
subgroup of exchangers [14] and therefore is isomorphic to Sw

2 : Sw. Table 2 shows the number
of selective gates, the number of inverters and the number of exchangers. For the exchangers,
we use the semicolon notation [15]. For example, the permutation (1;2) denotes the exchange

3558 Y Van Rentergem et al

Table 2. Some special types of reversible logic gates, the number p of different gates of each type
and the maximum number s of switches in the implementation of such gate.

Gate type p s

Inverter 2w 0
Exchanger w! 0
Selective gate w!2w 0

Simple control gate 22w−1
(w − 1)2w

Compact control gate 2w−1 + 1 4(w − 1)

Arbitrary reversible gate (2w)! 4
3 (4w − 3w − 1)

(or swap) of bits A1 and A2. Thus (1;2) is a particular permutation of the w columns of the
truth table. As any reversible gate of width w corresponds to a permutation of the 2w rows
of its truth table, the column permutation (1;2) corresponds to a particular row permutation.
Indeed, we have

(1;2) = (2w−1-2w−2+1,2w−1+1) (2w−1-2w−2+2,2w−1+2) . . . (2w−1,2w−1+2w−2).

The special exchanger (1;2;...;w) we will call the cyclic exchanger and denote by z.
Now, the synthesis problem has to be solved for all remaining reversible gates. We will

proceed by induction: we will assume that we have an algorithm for implementing an arbitrary
reversible gate of width w − 1 and will construct an algorithm for implementing an arbitrary
reversible gate of width w. There exist only two reversible gates of unitary width: the follower
and the inverter. Both can be implemented into hardware. This fact guarantees that the
recursive construction can be completed in a finite number of steps.

2. Simple control gates

The subgroup of simple control gates was introduced by De Vos, Storme and Desoete
[15, 16], in the framework of ultra-low power electronics:

Pi = Ai for all i ∈ {1, 2, . . . , w − 1}
Pw = f (A1, A2, . . . , Aw−1) XOR Aw,

where f denotes an arbitrary Boolean function of w − 1 Boolean arguments. The reader can
easily verify that, if we cascade two identical such gates, all outputs equal their corresponding
inputs. This proves that such a gate is reversible and moreover equals its own inverse.

Table 1b shows an example for w = 3 and f (A1, A2) = A1 + A2, i.e. where the control
function f is the OR of the bits A1 and A2. The permutation, performed by the gate, is
(1,2)(3,4)(7,8). Figure 2 shows its schematic implementation, as well as its hardware
implementation. The latter contains eight switches. Switches with a label X are closed iff
X = 1. Note that each switch needs either three or four metal interconnects, according to its
connection (either in series or in parallel). As there are an equal number of series and parallel
wirings, the interconnect count equals 7

2 of the switch count.
Note that a small square in the schematic indicates a control. In the special case

that f (A1, A2, . . . , Aw−1) equals the AND function A1A2 . . . Aw−1, we speak about the
CONTROLLEDw−1 NOT gate. Its permutation is (2w-1,2w). In this particular case, the little
squares in figure 2(b) are replaced by little circles.

These simple control gates form a group. As there exist 22q

different Boolean functions
of q Boolean variables, the group is of order 22w−1

(isomorphic to S2w−1

2). Any simple control
gate can be implemented with the help of (w − 1)2w switches (or less).

Implementing an arbitrary reversible logic gate 3559

a

b

A1 P1

P2

P3

2A

3A

A1

A1

A1

P1

P2

P3

2A

2A2A

3A

1A

1A1A

1P

3A P3

2A

2A

2A

P2

Figure 2. A simple control gate of width 3: (a) implementation, (b) schematic.
Note. For sake of clarity, the ‘vertical’ interconnections between the controlling lines (A1, A1, A2
and A2) and the controlled switches are not shown explicitly in (a).

We define here a special class of simple control gates: the compact control gates. A simple
control gate is compact iff its control function is compact. A compact Boolean function of q
Boolean arguments can be written as a combination of ORs and ANDs with only q letters. See
appendix A. As a consequence, such gate can be implemented with only 4(w−1) switches (or
less). We note that the compact control gates do not form a subgroup of the group of simple
control gates. They merely form a set of generators of this group. Table 2 shows the number
of simple control gates, the number of compact control gates as well as their respective switch
counts.

We conclude this section by introducing ‘upside-down simple control gates’. These gates
very much resemble the above-described simple control gates. However, not the lowermost
bit (i.e. Aw) is controlled by the others (i.e. by A1, A2, . . . , and Aw−1), but the uppermost bit
(i.e. A1) is controlled by the others (i.e. by A2, A3, . . . , and Aw):

P1 = f (A2, A3, . . . , Aw) XOR A1

Pi = Ai for all i ∈ {2, 3, . . . , w}.
The reader can easily verify that these form a group, conjugate to the group of simple control
gates. Indeed any upside-down simple control gate can be written as the cascade zcz−1, where
c is a simple control gate and z is the cyclic exchanger.

3. SWITCHED gates

We define a SWITCHED gate of width w (with binary inputs A1, A2, . . . , Aw and binary outputs
P1, P2, . . . , Pw) as follows:

The output bit P1 equals the input bit A1, whereas P2, P3, . . . , Pw are the outputs of
some reversible gate of width w − 1 with inputs A2, A3, . . . , Aw: if A1 = 0 then of
gate g′ else of gate g′′.

Figure 3(a) shows the schematic representation, for the example w = 4.

3560 Y Van Rentergem et al

a

b

A1 P1

g

‘

g

“

P2

P3

P4

2A

3A

4A

A1

A1 P1

g

‘

g

“

P2

P3

P4

2A

3A

4A

1A

Figure 3. SWITCHED gate of width 4: (a) schematic, (b) layout.

A1 P1

g

‘

g

“

P2

P3

P4

2A

3A

4A

g

Figure 4. A 4-bit SWITCHED gate, followed by an arbitrary 1-bit reversible gate.

As there exist (2w−1)! different reversible gates of width w − 1, there exist

s(w) = [(2w−1)!]2

different SWITCHED gates of width w. The cascade of two SWITCHED gates (one with subgates
g′

1 and g′′
1 , the other with subgates g′

2 and g′′
2) is itself a SWITCHED gate (with subgates g′

1g
′
2

and g′′
1g′′

2). Therefore the SWITCHED gates form a group, which we will denote by K. It is
isomorphic to the direct product S2

2w−1 . We note that it is an ‘almost maximal’ subgroup of S2w .
Indeed, there exists precisely one group that simultaneously is a proper subgroup of R and
a proper supergroup of K. According to the O’Nan–Scott theorem [17], this ‘intermediate’
group is isomorphic to the wreath product group S2w−1 wr S2 and has order 2s(w). Thus, we
have the following chain of maximal subgroups:

S2w−1 × S2w−1 ⊂ S2w−1 wr S2 ⊂ S2w .

The intermediate group is the normalizer of K (i.e. the largest subgroup of R in which K is
normal). Figure 4 represents an arbitrary gate of this group: it is a SWITCHED gate, combined
with a 1-bit gate g (necessarily either a 1-bit follower or a 1-bit inverter).

Implementing an arbitrary reversible logic gate 3561

Note that several notorious reversible gates are special SWITCHED gates. The FREDKIN
gate is the SWITCHED gate of width 3 with

• g′ the 2-bit follower, and
• g′′ the 2-bit exchanger (also referred to as the SWAP gate).

The CONTROLLED NOT gate is the SWITCHED gate of width 2 with

• g′ the 1-bit follower, and
• g′′ the 1-bit inverter.

The CONTROLLEDk NOT has a recursive definition: it is the SWITCHED gate of width k + 1 with

• g′ the k-bit follower, and
• g′′ the CONTROLLEDk−1 NOT.

Also the simple control gates of section 2 can be defined in a recursive way: the simple control
gate of width w, with control function f (A1, A2, . . . , Aw−1), can, thanks to the Shannon
decomposition [18], be interpreted as the SWITCHED gate of width w with

• g′ the simple control gate with control function f (0, A2, . . . , Aw−1), and
• g′′ the simple control gate with control function f (1, A2, . . . , Aw−1).

It is clear that, if we are able to implement both the gate g′ and the gate g′′ with a
finite number of switches (say s ′ and s ′′, respectively), then we can implement the SWITCHED
either-g′-or-g′′ gate with s ′ + s ′′ + 4(w − 1) switches, the 4(w − 1) ‘additional’ switches all
being controlled by the bit A1. See figure 3(b) for the case w = 4, where the upper three
switches are closed iff A1 = 0, the lower three being closed iff A1 = 1. The figure displays
2(w − 1) switches; not shown in the figure are the dual lines Ai and Pi . As also A2, A3 and
A4 have to be switched by the value of A1, the six switches in figure 3(b) in fact represent
twelve switches in the physical implementation. For arbitrary w, there are thus 4(w − 1)

physical switches. Also not shown explicitly in figure 3(b) are the ‘vertical’ control wires
between the ‘horizontal’ controlling lines (A1 and A1) and the controlled switches. The total
number of metal interconnections is ten times the number of switches. Now, if we denote by
σ(w) the maximum number of switches necessary to implement an arbitrary reversible gate
of width w, we can conclude that the SWITCHED gates of width w can be manufactured with
2σ(w − 1) + 4(w − 1) switches (or less).

We finally note that the group K of SWITCHED gates is not a normal subgroup of R. The
minimal normal subgroup of R containing K (i.e. the normal closure of K) is the entire group
R of all reversible gates. The maximal normal subgroup of R contained in K (i.e. the core of
K) is the trivial subgroup 1 consisting merely of the w-bit follower.

The subgroup K has 1
2C

2w/2
2w = (2w)!/2[(2w−1)!]2 conjugate subgroups. Among these,

there are w conjugate subgroups (1;j)K(1;j), where (1;j) denotes the exchanger gate
interchanging column A1 and column Aj of the truth table. The simplest example of a subgroup
conjugate to K is (1;2)K(1;2). Figure 5(b) shows an arbitrary gate of this conjugate group.
We see in figure 5(b) how A2 takes over the role of A1 in figure 5(a). Of course, the two
subgroups K and (1;2)K(1;2) are not disjoint. They have an intersection, necessarily
a subgroup of both. A gate which is simultaneously member of K and (1;2) K (1;2),
necessarily has its output P1 equal to A1 and its output P2 equal to A2. The reader can easily
verify that the other outputs (P3, P4, . . . , Pw) are functions of the inputs (A3, A4, . . . , Aw)

which can be controlled by both A1 and A2. In figure 5(c), we see four subsubgates between
(A3, A4) and (P3, P4). Which of these four gates is actually valid depends on the value of
(A1, A2). Therefore, the intersection of K and (1;2) K (1;2) is simply isomorphic to the
product group S4

2w−2 of order [(2w−2)!]4.

3562 Y Van Rentergem et al

a

b

c

P1

P2

P3

P4

A1

2A

3A

4A

P1

P2

P3

P4

A1

2A

3A

4A

P1

P2

P3

P4

A1

2A

3A

4A

Figure 5. Three subgroups of the group of reversible gates: (a) the subgroup K of SWITCHED
gates, (b) its conjugate subgroup (1;2) K (1;2) and (c) the intersection of both.

R

K

Figure 6. The group R of reversible gates of width 2 and its three conjugate subgroups
K, (1,3)K (1,3) and (2,3)K (2,3).

Figure 6 shows the case of w = 2: the full group R of 4! = 24 reversible gates, the
subgroup K of (2!)2 = 4 SWITCHED gates and the latter’s two conjugate groups of the same
order.

4. Double cosets

Let G be an arbitrary group and H an arbitrary (proper) subgroup of G. Then we can partition
the elements of G into equivalence classes called double cosets. The double coset of an
arbitrary element g of G consists of all elements h1gh2, where both h1 and h2 are arbitrary
elements of H. Assume we can build all elements of H, as well as one particular element g

of G. Then we can build all elements of the double coset of g by simply constructing the
appropriate cascade of h1, g and h2. Thus, in order to be able to hardwire all elements of G,

Implementing an arbitrary reversible logic gate 3563

Figure 7. Number of double cosets in which the group R of reversible gates is partitioned by the
subgroup K of SWITCHED gates.

it suffices to have a hardware implementation of

• all elements of H and
• one element of each double coset.

The latter element is called the representative of that particular double coset.
The number of elements of a group is called the order of the group. Let γ be the order

of G and η the order of H. Let � be the number of double cosets in which G is partitioned
by H. Then, in order to be able to construct all γ elements of G, it is sufficient to have an
implementation of

• the η elements of H and
• the � representatives of the � double cosets of H in G.

These two sets overlap, as one of the double cosets of H is H itself. Thus the union of
these two sets contains η + � − 1 elements. We call this new set the library of the hardware
implementation. This strategy is particularly attractive if η + � − 1 is much smaller than γ .
This requires an appropriate choice of H: not too large (otherwise η is large), but also not too
small (otherwise � is large). We will now follow this strategy with G equal to R and H equal
to K.

The group K of SWITCHED gates partitions the group R of reversible gates into a number
(say �) of double cosets. The number � is a function of the width w and therefore is
denoted by �(w). The reader can easily verify that �(1) = 2 and �(2) = 3. The computer
algebra package GAP [19, 20] (and in particular its command DoubleCosets) tells us that
�(3) = 5 and �(4) = 9. Appendix B gives a lower bound �′ and an upper bound �′′ on �.
Figure 7 shows the resulting large uncertainty on the number of double cosets generated by
the SWITCHED subgroup.

We will now perform the double coset decomposition of the group R and so determine
�(w) for arbitrary w. It is a special case of the decomposition of the symmetric group Sa+b into
double cosets by its subgroup Sa × Sb. See appendix C. For convenience, we will number the
� double cosets as numbers 0, 1, 2, . . . , i.e. starting from the ‘zeroth’ set. The zeroth double

3564 Y Van Rentergem et al

4 ()w 1- 4 ()w 1- 4 ()w 1-

()w 1-σ ()w 1-σ

()wσ

()w 1-σ ()w 1-σ

Figure 8. An arbitrary reversible gate of width w (here w = 4) with the position of its various
switches.

coset is the double coset of (), i.e. the subgroup itself. The first double coset is the double
coset of the upside-down CONTROLLEDw−1 NOT gate. In appendix D, we calculate the size
of this particular double coset. It is [(2w−1)!]4/[(2w−1 − 1)!]2. The second double coset
is the double coset of the upside-down CONTROLLEDw−2 NOT gate. In appendix D, we
subsequently construct all double cosets, until all gates of R are exhausted. This yields
an analytical expression for �, the number of double cosets:

�(w) = 2w−1 + 1.

The number �(w) is shown in figure 7.
We conclude that an arbitrary reversible gate g can be decomposed as k1rk2, where k1

and k2 stand for two particular SWITCHED gates and r is the representative of the appropriate
double coset. The latter is an upside-down SWITCHED gate of a very particular type, i.e. an
upside-down compact control gate, needing only 4(w − 1) switches. The arbitrary reversible
gate thus needs only

σ(w) = 4σ(w − 1) + 12(w − 1)

switches. Figure 8 gives a ‘geographic’ representation of this recursion formula. For the
solution of this equation, see appendix E, with a = 4, b = 12, c = −12 and σ(1) = 0. We
obtain

σ(w) = 4
3 (4w − 3w − 1). (1)

This result has been added to table 2.

5. The synthesis algorithm

From the previous section, we know that an arbitrary gate g can be built from a SWITCHED
gate k1, an upside-down compact control gate r and a second SWITCHED gate k2. Now the
following question arises: given the truth table of an arbitrary gate g, which gates k1, r and
k2 do we have to cascade? From appendix D, we know that there are quite some degrees
of freedom in the construction of the decomposition. Thus the procedure below is far from
unique.

Table 3a gives an example of a truth table representing an arbitrary reversible 3-bit gate
(out of the 8! = 40,320 different such gates which actually exist). Between the w input
columns Ai and the w output columns Pi of table 3a, we introduce w extra columns Fi

and w extra columns Ji . Figure 9 shows the ‘physical’ interpretation of these F and J bits.

Implementing an arbitrary reversible logic gate 3565

A1

2A

3A

4A

F1

2F

3F

4F

J 1

2J

3J

4J

P1

1
g

‘

1k 2kr

1
g

“

2
g

‘

2
g

“ P2

P3

P4

Figure 9. Decomposition of arbitrary reversible gate.

Table 3. Decomposition of a truth table: (a) original table and (b) extended table.

(a) Original table (b) Extended table

A1A2A3 P1P2P3 A1A2A3 F1F2F3 J1J2J3 P1P2P3

0 0 0 1 1 1 0 0 0 0 0 1 1 0 1 1 1 1
0 0 1 1 1 0 0 0 1 0 1 0 1 1 0 1 1 0
0 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 0
0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
1 0 0 1 0 1 1 0 0 1 0 0 1 0 0 1 0 1
1 0 1 0 1 0 1 0 1 1 0 1 0 0 1 0 1 0
1 1 0 0 0 1 1 1 0 1 1 0 0 1 0 0 0 1
1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 1

The procedure for filling in these additional 2w columns consists of two steps:

• first we fill in F1 equal to A1 and J1 equal to P1;
• then we compare column J1 with column F1:

(a) among the first 2w−1 rows, on those rows where J1 = F1, we give (F2, F3, . . . , Fw) =
(J2, J3, . . . , Jw) the values (0, 0, . . . , 0, 0), (0, 0, . . . , 0, 1), . . .

(b) among the last 2w−1 rows, on those rows where J1 = F1, we give (F2, F3, . . . , Fw) =
(J2, J3, . . . , Jw) the same values (0, 0, . . . , 0, 0), (0, 0, . . . , 0, 1), . . .

(c) on the remaining rows of the first 2w−1 rows, we give (F2, F3, . . . , Fw) = (J2,

J3, . . . , Jw) the remaining values . . . , (1, 1, . . . , 1, 0), (1, 1, . . . , 1, 1).
(d) on the remaining rows of the last 2w−1 rows, we give (F2, F3, . . . , Fw) = (J2, J3,

. . . , Jw) the same remaining values . . . , (1, 1, . . . , 1, 0), (1, 1, . . . , 1, 1).

Table 3b shows the result.
The former step guarantees that both the gate between (A1, A2, . . . , Aw) and

(F1, F2, . . . , Fw) and the gate between (J1, J2, . . . , Jw) and (P1, P2, . . . , Pw) are SWITCHED
gates. The latter step guarantees that (F2, F3, . . . , Fw) always equals (J2, J3, . . . , Jw) and
therefore that the gate between (F1, F2, . . . , Fw) and (J1, J2, . . . , Jw) is an upside-down
simple control gate. As

• F1 equals J1 for the minterm J2J3 . . . Jw−1Jw equal 00 . . . 00, 00 . . . 01, . . .

• F1 equals J1 for the minterm J2J3 . . . Jw−1Jw equal . . . , 11 . . . 10, 11 . . . 11,

the control function is a compact function.
The middle part of table 3b results in the control function of the control gate: see

table 4c. The left part of table 3b leads to the truth tables of both g′
1 and g′′

1 : see tables 4a
and b. The right part of table 3b leads to the truth tables of both g′

2 and g′′
2 : see table 4d and e.

3566 Y Van Rentergem et al

 0

 5000

10000

15000

 0 8 16 24 32 40 48 56 64 72 80

nu
m

be
r

of
 g

at
es

number of switches

a

b

Figure 10. Switch count distribution for w = 3: (a) according to basic procedure and (b) according
to improved procedure.

Table 4. Five small truth tables: (a) g′
1, (b) g′′

1 , (c) r, (d) g′
2 and (e) g′′

2 .

(a) g′
1 (b) g′′

1 (c) r (d) g′
2 (e) g′′

2

A2A3 F2F3 A2A3 F2F3 F1F2F3 J1 J2J3 P2P3 J2J3 P2P3

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0 1 1 1
1 0 1 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0
1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0

1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

Then we apply the above procedure to each of these four subtables. Each of them gives rise
to one control gate and four smaller subgates. At this stage, the circuit consists of one control
gate of width w, four control gates of width w − 1 and 42 = 16 subsubgates of width w − 2.
We proceed further according to these lines, until we have 4w−1 subtables, all of width 1, i.e.
until all subtables represent merely 1-bit followers or 1-bit inverters.

We applied the above procedure to all 40 320 reversible truth tables of width 3, using the
computer algebra package Maple. Figure 10 shows the resulting distribution of the switch
number s. Depending on the compact control functions distilled by the procedure, s can have
different values, ranging from 48 to 72. The worst value (s = 72) is a direct consequence
of equation (1), whereas the lowest value (s = 48) is explained as follows: in the best case
the control functions of all upside-down control gates equal the constant function f0 = 0 and
therefore need no switches, leading to 8

9 (4w − 3w − 1) (see appendix E, with a = 4, b = 8
and c = −8). The average value of s turns out to be 1336

21 ≈ 63.6. One can easily make
this number smaller by making the procedure somewhat more sophisticated. For example we
can foresee that whenever g′ = g′′, then these two gates and the corresponding switches are
replaced by a single gate without switches. The figure also shows the switch count produced
by such refined procedure. Now the switch count s ranges from 0 to σ(w). For w � 3, the
distribution falls to zero even before s = σ(w). In our example (i.e. w = 3), the average s is

Implementing an arbitrary reversible logic gate 3567

a b

Figure 11. Implementation of the 3-bit reversible gate (3,5)(4,6): (a) by artificial intelligence
and (b) by natural intelligence.

now only 17 131
420 ≈ 40.8 anymore. The procedure can, of course, be refined further, if necessary.

For example the automatic procedure implements the 3-bit reversible gate (3,5)(4,6) as in
figure 11(a), needing 12 switches, whereas the reader can easily verify that the circuit in
figure 11(b), needing zero switches, does the job equally well. The automatic replacement
of figure 11(a) by 11(b) is possible by programming ‘template matching’. For this subject,
the reader is referred to the detailed discussions by Miller et al [21] and by Shende et al
[12, 22, 23].

6. Discussion

Other authors recently have presented algorithms for synthesizing arbitrary reversible gates.
Many approaches require extensive searching. In the present section, we will compare our
results only with those of other methods that, just like ours, synthesize in a straightforward
way, avoiding any extensive search.

6.1. Dueck and Maslov

Dueck and Maslov [24] have presented a synthesis consisting of a cascade of gates, all of the
type ece, where e is an exchanger of type (j;w), with 1 � j � w, and c is a simple control
gate with control function

f (A1, A2, . . . , Aw−1) = Ã1Ã2 . . . Ãw−1,

where the tilde has the following meaning: X̃ equals either X or X or 1. In other words, f

is a minterm of the arguments A1, A2, . . . , Aw−1 or a minterm of a subset of these. Their
synthesis needs no more than w2w such simple control gates. As the hardware implementation
of a simple control gate with such special control function does not need more than 4(w − 1)

switches, the Dueck and Maslov algorithm needs 4(w − 1)w2w switches or less. Figure 12
compares this worst-case number to our worst-case switch count σ(w). For w � 6, our
synthesis method turns out to be slightly more efficient, whereas for w � 7, the Dueck–
Maslov algorithm is more efficient.

6.2. Miller, Maslov and Dueck

Miller, Maslov and Dueck [21] have presented a variant of the Dueck–Maslov algorithm. It
also uses a string of ece gates; it again uses control functions of the form Ã1Ã2 . . . Ãw−1, but
now X̃ stands for either X or 1. Thus all simple control gates are CONTROLLEDk NOT gates
(with 0 � k � w − 1).

3568 Y Van Rentergem et al

 1

 10^3

 10^6

1 2 3 4 5 6 7 8 9 10 11 12

sw
itc

h
co

un
t

gate width w

a

b

c

Figure 12. Maximum number of switches in the implementation of a w-bit reversible gate:
(a) according to the present algorithm, (b) according to the Dueck–Maslov algorithm and (c)
according to the Miller–Maslov–Dueck algorithm.

The Miller–Maslov–Dueck synthesis needs at most (w − 1)2w + 1 gates, which each need
at most 4(w − 1) switches. This results into a maximum of 4(w − 1)[(w − 1)2w + 1] switches.
This amount is displayed in figure 12(c). We see how the Miller–Maslov–Dueck synthesis
uses slightly less switches than the Dueck–Maslov synthesis.

7. Conclusion

We have introduced group theory as a possible design strategy for synthesizing a reversible
gate. This leads us to an algorithm which can be used to automate the implementation of
an arbitrary reversible function in future (c-MOS) technologies, and thus realizing low-cost
computing.

Among the group R of (2w)! reversible logic gates of width w, we have distinguished two
special types:

• the [(2w−1)!]2 SWITCHED gates of width w, which form a subgroup K, and
• the 2w−1 + 1 compact control gates of width w, which do not form a group.

We have derived what is called in group theory [25] ‘the double coset space K\R/K of R
relative to K’. It consists of 2w−1 + 1 sets. Because there is a 1-to-1 relationship between
compact Maitra terms and double cosets, the compact control gates, put upside down, form
a complete set of double coset representatives for K\R/K. Thus, we have proven that any
reversible gate can be constructed by cascading three gates:

• a first SWITCHED gate,
• an upside-down compact control gate and
• a second SWITCHED gate.

We have also given an explicit algorithm in order to determine, for a given reversible gate,
which two SWITCHED gates and which compact control gate we need. The procedure leads
to an explicit hardware implementation, consisting of 4

3 (4w − 3w − 1) controlled switches
(or less). This solves the synthesis problem of the reversible logic gate.

It is well known [26, 27] that any combinatorial network with nin binary inputs and
nout binary outputs can be embedded within a reversible truth table by merely adding the

Implementing an arbitrary reversible logic gate 3569

appropriate number of garbage output columns and preset input columns. Such reversible
truth table will have an appropriate width w satisfying max(nin, nout) � w � nin + nout.
Once the table is constructed, it can be implemented into hardware by the method presented
here. As a conclusion, we can say that any Boolean operation (of arbitrary complexity) can
be implemented by the above presented algorithm into a hardware circuit that is logically
reversible.

Appendix A. Compact functions

There exist 22q

functions of q Boolean variables X1, X2, . . . , Xq . All can be written as an OR
of minterms:

f (X1, X2, . . . , Xq) = ε00...0X1 X2 . . . Xq + ε00...1X1 X2 . . . Xq + · · · + ε11...1X1X2 . . . Xq.

The values of the 2q coefficients ε fully determine the function f . We call a function compact
if the last j coefficients equal 1 and all the remaining 2q − j coefficients equal 0, with j an
arbitrary integer satisfying 0 � j � 2q . There exist 2q + 1 such functions:

f0 = 0

f1 = X1X2 . . . Xq−1Xq

f2 = X1X2 . . . Xq−1Xq + X1X2 . . . Xq−1Xq

f3 = X1X2 . . . Xq−1Xq + X1X2 . . . Xq−1Xq + X1X2 . . . Xq−1Xq

. . .

f2q−1 = X1 X2 . . . Xq−1Xq + X1 X2 . . . Xq−1Xq + . . . + X1X2 . . . Xq−1Xq

f2q = X1 X2 . . . Xq−1 Xq + X1 X2 . . . Xq−1Xq + . . . + X1X2 . . . Xq−1Xq.

Many of these expressions can be simplified to some short combination of ORs and ANDs:

f0 = 0

f1 = X1X2 . . . Xq−1Xq

f2 = X1X2 . . . Xq−1

f3 = X1X2 . . . Xq−2(Xq−1 + Xq)

· · ·
f2q−1 = X1 + X2 + · · · + Xq−1 + Xq

f2q = 1.

We will now prove that any compact function can be written as an expression containing OR
operators, AND operators and at most q letters Xk (with 1 � k � q). The proof is by full
induction.

Let us assume the theorem holds for q = Q − 1. We have to demonstrate that it also
holds for q = Q. Any function of Q variables can be decomposed according to the Shannon
decomposition:

f (X1, X2, . . . , XQ) = X1f (1, X2, . . . , XQ) + X1f (0, X2, . . . , XQ).

If f is compact, then there are three possibilities:

• If f has less than 2Q−1 terms in its minterm expansion, then f (1, X2, . . . , XQ) is compact
and f (0, X2, . . . , XQ) equals 0, such that f (X1, X2, . . . , XQ) = X1f (1, X2, . . . , XQ) is
written with at most 1 + (Q − 1) = Q letters.

• If f has exactly 2Q−1 terms in its minterm expansion, then f (1, X2, . . . , XQ) = 1 and
f (0, X2, . . . , XQ) = 0, such that f (X1, X2, . . . , XQ) = X1 is written with one letter.

3570 Y Van Rentergem et al

• If f has more than 2Q−1 terms in its minterm expansion, then f (1, X2, . . . , XQ)

equals 1 and f (0, X2, . . . , XQ) is compact, such that f (X1, X2, . . . , XQ) = X1 +
X1f (0, X2, . . . , XQ) = X1 + f (0, X2, . . . , XQ) is written with at most 1 + (Q − 1) = Q

letters.

We additionally note that the theorem holds for q = 1, as there exist only three compact
functions of one variable X1:

f0(X1) = 0 f1(X1) = X1 f2(X1) = 1.

All three can be written by using one letter (or less). This makes the proof complete.
There exists a similar theorem for functions with the dual property: functions with the

first j coefficients ε equal to 1 and all remaining 2q − j coefficients ε equal to 0: they can
be written as an expression containing OR operators, AND operators and at most q overlined
letters Xk .

We finally note that, except for f0, all compact functions can be written as Maitra terms
[28–30]:

fi = X1 & (X2 & (. . . Xq−1 & (Xq & 1) · · ·)) for 1 � i � 2q,

where & stands for ‘either AND or OR’. Alternatively, all but the last compact functions can be
interpreted as follows as Maitra terms:

fi = X1 & (X2 & (. . . Xq−1 & (Xq & 0) · · ·)) for 0 � i � 2q − 1.

In Maitra’s original paper [28], the symbol & has the meaning ‘any of the 16 Boolean functions
of two Boolean variables’. In the paper by Sarabi et al [29], however, the symbol & stands
for ‘either AND or OR or XOR’. Mishchenko and Perkowski [31] consider three different
interpretations of the infix operator &:

• any two-input Boolean function
• two-input function restricted to AND, OR and XOR
• two-input function restricted to AND and OR.

Here, we apply the last meaning: & stands for ‘either AND or OR’, for the simple reason that an
AND can be hardwired as a series connection of switches, whereas an OR can be implemented as
a parallel connection of switches. In order to avoid any confusion because of the proliferation
of definitions, we will call Maitra terms applying exclusively AND and OR functions compact
Maitra terms.

Appendix B. Bounds on the number of double cosets

A subgroup H (of order η) of a group G (of order γ) partitions the group G into γ /η left
cosets, all of size η. It analogously partitions G into γ /η right cosets, all of size η. The same
subgroup H partitions G into double cosets. However, these are usually not of equal size.
Each double coset has a size which is a multiple of η, the smallest possible size being η itself,
the largest possible size being η2. The smallest possible size is always present, as H itself is
one of the double cosets; the size η2 is not always present. Not only the size distribution of
double cosets is difficult to determine, even the number of sets is difficult to predict. We can,
however, easily put some bounds on the number. Let � be the exact number of double cosets.
Then � is largest in case all double cosets have minimum size η and is smallest if one double
coset is of size η and all others of maximum size η2. Taking into account that � is an integer,
we finally deduce

1 +

⌈
γ − η

η2

⌉
� � � γ

η
,

Implementing an arbitrary reversible logic gate 3571

where �x� stands for the ceiling of x, i.e. the smallest integer greater than or equal to x. Note
that γ /η always is an integer (because of Lagrange’s theorem) and is called the index of H
in G. The above lower bound we will denote by �′, whereas the above upper bound we will
denote by �′′.

Appendix C. A theorem on double cosets

We consider the symmetric group G = Sn, where n is an arbitrary integer. It consists of all
permutations of the n numbers {1, 2, . . . , n}. Its order is n!. We treat n as the sum of two other
natural numbers: n = a + b. We consider the permutations of the a numbers {1, 2, . . . , a}, as
well as the permutations of the b numbers {a + 1, a + 2, . . . , n}. We define the subgroup H as
the direct product Sa × Sb. Its order is a!b!. We will now prove the following theorem:

The subgroup Sa × Sb partitions the group Sa+b into min(a, b) + 1 double cosets.

Merely for convenience, we will assume here that a � b. We will demonstrate that the
following permutations form a complete set of representatives: (), (a,n), (a-1,n-1)
(a,n), . . . , and (1,n-a+1)(2,n-a+2) . . . (a,n).

Let us consider the permutation

rj = (a-j+1,n-j+1)(a-j+2,n-j+2) . . . (a,n),

where j is an arbitrary integer satisfying 0 � j � a. The double coset of rj consists of all
permutations written as h1rjh2, where h1 and h2 are two arbitrary elements of the subgroup
H. This double coset consists of all permutations π which map i on πi (with 1 � i � n)
such that {π1, π2, . . . , πa} contains a − j numbers from {1, 2, . . . , a} and j numbers from
{a + 1, a + 2, . . . , n}, and where {πa+1, πa+2, . . . , πn} contains j numbers from {1, 2, . . . , a}
and b − j numbers from {a + 1, a + 2, . . . , n}. In other words, this double coset consists
of all permutations of {1, 2, . . . , n}, where exactly j numbers have moved from somewhere
within {1, 2, . . . , a} to somewhere within {a + 1, a + 2, . . . , n} and exactly j have moved
from somewhere within {a + 1, a + 2, . . . , n} to somewhere within {1, 2, . . . , a}. Conversely,
permutations that exchange j ′ numbers between these two parts of {1, 2, . . . , n}, with j ′ �= j ,
do not belong to the double coset of rj .

In order to determine the size of the double coset of rj without any double counting, we
can e.g. proceed in the following three steps:

• we choose the j elements {x1, x2, . . . , xj } from {1, 2, . . . , a} which will be moved to
{a + 1, a + 2, . . . , n}, and analogously we choose the j elements {y1, y2, . . . , yj } from
{a + 1, a + 2, . . . , n} which will be moved to {1, 2, . . . , a};

• we permute the numbers x1, x2, . . . , xj with the numbers a − j + 1, a − j + 2, . . . , a by
means of an appropriate member of Sa (i.e. by means of a permutation that maps x1 to
a − j + 1, x2 to a − j + 2, etc), and analogously we permute the numbers y1, y2, . . . , yj

with the numbers n − j + 1, n − j + 2, . . . , n by means of an appropriate member of Sb,
and finally we perform the permutation rj ;

• we permute the numbers 1, 2, . . . , a by means of an arbitrary member of Sa , and
analogously we permute the numbers a + 1, a + 2, . . . , n by means of an arbitrary member
of Sb.

The first step yields Ca
j Cb

j different possibilities; the second step yields no degrees of freedom;
the third step gives a!b! different possibilities. Multiplication of these independent possibilities
finally yields the desired number: (a!)2(b!)2/[(j !)2(a − j)!(b − j)!]. Note that this size is

3572 Y Van Rentergem et al

smaller than (a!b!)2, the square of the order of H, a fact which demonstrates that indeed we
have eliminated ‘double countings’.

Taking all values for j , from 0 to a, gives a + 1 double cosets. The union of all elements
of these a + 1 sets exactly exhausts all elements of G. This is a consequence of the identity

a∑
j=0

a!b!

(a − j)!j !j !(b − j)!
= (a + b)!

a!b!
,

which is deduced from a special case (n = p = a and m = b) of the Gradshteyn and Ryzhik
[32] formula 0.156.1:

a∑
k=0

a!

k!(a − k)!

b!

(a − k)!(b − a + k)!
= (a + b)!

a!b!
,

by performing the substitution k = a − j .

Appendix D. The size of the double cosets

For convenience, we number the � double cosets as numbers 0, 1, 2, . . . , i.e. starting from
number zero. We will apply the theorem of appendix C, for the special case n = 2w and
a = b = 2w−1.

D.1. The zeroth double coset

We choose a very simple representative r0 of the zeroth double coset: the w-bit follower ().
We count the number of different cascades k1rk2, where k1 and k2 are two arbitrary members
of K. As k1rk2 equals k1k2, and as K forms a group, this product equals some third SWITCHED
gate k3. Thus there are ‘only’ s(w) = [(2w−1)!]2 gates in this zeroth double coset.

We close the present subsection by noting that the representative r0 = () of the zeroth
double coset can be interpreted as the upside-down simple control gate with control function
f = 0, i.e. f equal to the zeroth Maitra term f0.

D.2. The first double coset

We choose a representative r1 of the first double coset: the CONTROLLEDw−1 NOT gate in which
the bits F2, F3, . . . , and Fw control F1, i.e. the CONTROLLEDw−1 NOT gate upside down. See
figure 9 (with its w − 1 little squares replaced by little circles). Its permutation notation
is (2w−1, 2w). We count the number of different cascades k1r1k2, where k1 and k2 are two
arbitrary members of K. According to appendix C, there are ‘only’ [(2w−1)!]4/[(2w−1 − 1)!]2

different cascades.
We note that the upside-down CONTROLLEDw−1 NOT gate is the upside-down simple

control gate of width w, where the bit F1 is controlled by means of the control function
f (F2, F3, . . . , Fw) equal to the minterm F2F3 . . . Fw, which can also be written as the Maitra
term f1(F2, F3, . . . , Fw). The first double coset contains more upside-down simple control
gates. Indeed, the reader can easily verify that any upside-down simple control gate with
control function equal to a minterm is an element of the set and thus can play the role of r1.

D.3. The second double coset

We choose a representative r2 of the second double coset: the CONTROLLEDw−2 NOT gate in
which bits F2, F3, . . . , and Fw−1 control F1, i.e. the CONTROLLEDw−2 NOT gate upside down.

Implementing an arbitrary reversible logic gate 3573

b

r0 r1 r2 r3 r4

c

r0 r1 r2 r3 r4 r 5 r 7 r 8r6

a
r0 r1 r2

Figure 13. The representatives of the double coset decomposition: (a) for w = 2, (b) for w = 3
and (c) for w = 4.

Its permutation notation is (2w−1-1,2w-1)(2w−1,2w). According to appendix C, there are
‘only’ [(2w−1)!]4/[2!(2w−1 − 2)!]2 different cascades of the form k1r2k2.

We note that the upside-down CONTROLLEDw−2 NOT gate is the upside-down simple control
gate of width w with control function f (F2, F3, . . . , Fw) equal to F2F3 . . . Fw−1 and thus to
a sum of two minterms: F2F3 . . . Fw−1Fw + F2F3 . . . Fw−1Fw, and thus to the Maitra term
f2(F2, F3, . . . , Fw). The second double coset contains more upside-down simple control
gates. Indeed, any upside-down simple control gate with control function equal to the sum of
two minterms is an element of the set.

D.4. The j th double coset

One can proceed further along these lines. Two simple control gates with an equal number
j of minterms in their control functions belong to the same double coset. Conversely, any
simple control gate with k minterms (k �= j) in its control function does not belong to the
double coset defined by a simple control gate with j minterms in its control function.

Thus, for the representative rj of the j th double coset, we can choose any upside-down
control gate with a control function consisting of j minterms. In particular, we choose the
upside-down control gate with control function equal to the j th compact Maitra term fj :

rj = (2w−1-j+1,2w-j+1)(2w−1-j+2,2w-j+2) . . . (2w−1,2w).

Figure 13 shows this set of representatives for the cases w = 2, w = 3, and w = 4.
For a change, each simple control gate is drawn here not as a compact control gate but as a
decomposition into CONTROLLEDi NOTs (with i ranging from 0 to w−1). The last representative
is the NOT gate applied to F1 = A1.

According to appendix C, the j th double coset has size

[(2w−1)!]4

[j !(2w−1 − j)!]2
.

Figure 14 shows the different sizes for the case w = 4. The sum of all these sizes exactly
yields the order (2w)! of the whole group R. The 2w−1 + 1 different compact Maitra terms,
each one giving rise to a single double coset, thus suffice to enumerate the whole space of
double cosets.

3574 Y Van Rentergem et al

 1

 10^3

 10^6

 10^9

 10^12

1 2 3 4 5 6 7 8 9

si
ze

coset label j

a

b

Figure 14. The number of elements in each of the nine double cosets in the case w = 4: (a) total
number of gates and (b) the number of upside-down simple control gates.

By applying a reasoning analogous to section C.3, one can prove that any control function
with j terms in its minterm expansion can play the role of representative rj . There are C

j

2w−1

such functions. Figure 14(b) shows how many upside-down simple control gates can be found
in each of the double cosets. The number of upside-down compact control gates in each
double coset is exactly 1.

Figure 13 shows how the representative rj can be constructed. Figure 15(a) gives a
more systematic implementation of the representatives in figure 13: the j th representative
consists of

• the cyclic exchanger z,
• a SWITCHED gate with 2w−1 gates of width 1, the first 2w−1 − j being 1-bit followers, the

last j being 1-bit inverters and
• the inverse z−1 of the cyclic exchanger.

Such hardware implementation needs 4(2w − w − 1) switches. See appendix E, with
a = 2, b = 4 and c = −4. Figure 15(b) illustrates how such gate can be simplified,
such that its number of switches is only 2w(w − 1). Figure 16 gives the implementation as a
compact control gate, needing only 4(w − 1) switches. In contrast to figures 15(a) and (b),
figure 16 also displays explicitly the dual lines Fi and Ji . The labels near the switches tell
which Boolean variable has to equal 1 in order to close the switch. The reader can easily
recognize twice the implementation of the Maitra term

f3(F2, F3, F4) = F2(F3 + F4)

and twice the implementation of its inverse

f3(F2, F3, F4) = F2 + (F3 F4).

In electronics, one speaks of two pull-up and two pull-down networks.

Implementing an arbitrary reversible logic gate 3575

a

b

Figure 15. The representative r3 of the third double coset in the case w = 4: (a) systematic
implementation as SWITCHED gate (with 44 switches) and (b) simplified implementation as
SWITCHED gate (with only 24 switches).

F1 J1

J2

J3

J4

2F

2F

2F

3F

3F

3F4F

4F

4F

1F

1J

3F

3F

3F

4F

4F

4F

J3

J4

2F

2F

2F J2

Figure 16. The representative r3 of the third double coset in the case w = 4: implementation as
compact control gate (with only 12 switches).
Note. For sake of clarity, the ‘vertical’ interconnections between the controlled switches and their
controlling lines (F2, F2, F3, F3, F4 and F4) are not shown explicitly.

3576 Y Van Rentergem et al

Appendix E. Recursion relation

We consider the recursion relation

σ(w) = aσ(w − 1) + bw + c,

where a, b and c denote constants. We introduce the new unknown τ(w) by postulating

σ(w) = awτ(w),

yielding the new recursion relation

τ(w) = τ(w − 1) + (bw + c)

(
1

a

)w

and the solution

τ(w) = τ(1) +
w∑

i=2

(bi + c)

(
1

a

)i

= τ(1) + b

w∑
i=2

i

(
1

a

)i

+ c

w∑
i=2

(
1

a

)i

or

τ(w) = τ(1) + b
2aw − aw−1 − (w + 1)a + w

aw(a − 1)2
+ c

aw−1 − 1

aw(a − 1)
,

and thus

σ(w) = aw−1σ(1) + b
2aw − aw−1 − (w + 1)a + w

(a − 1)2
+ c

aw−1 − 1

a − 1
.

In the special case that c = −b, the expression simplifies to

σ(w) = aw−1σ(1) + b
aw − (a − 1)w − 1

(a − 1)2
.

References

[1] Markov I 2003 An introduction to reversible circuits Proc. Int. Workshop on Logic and Synthesis (Laguna
Beach, May 2003) pp 318–9

[2] Landauer R 1961 Irreversibility and heat generation in the computing process IBM J. Res. Dev. 5 183–91
[3] Bennett C 1982 The thermodynamics of computation—a review Int. J. Theor. Phys. 21 905–40
[4] Bennett C and Landauer R 1985 The fundamental physical limits of computation Sci. Am. 253 38–46
[5] Bennett C 1988 Notes on the history of reversible computation IBM J. Res. Dev. 32 16–23
[6] Wayner P 1994 Silicon in reverse Byte 19 67–74
[7] De Vos A 2003 Lossless computing Proc. IEEE Workshop on Signal Processing (Poznań, Oct 2003) pp 7–14
[8] Feynman R 1985 Quantum mechanical computers Opt. News 11 11–20
[9] Feynman R 1996 Feynman Lectures on Computation ed A Hey and R Allen (Reading: Addison-Wesley)

[10] Berman G, Doolen G, Mainieri R and Tsifrinovich V 1998 Introduction to Quantum Computers (Singapore:
World Scientific)

[11] Nielsen M and Chuang I 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge
University Press)

[12] Shende V, Prasad A, Markov I and Hayes J 2003 Synthesis of reversible logic circuits IEEE Trans. Comput.-
aided Design Integr. Circuits Syst. 22 710–22

[13] Athas W, Svensson L, Koller J, Tzartzanis N and Chou E 1994 Low-power digital systems based on adiabatic-
switching principles IEEE Trans. Very Large Scale Integr. Syst. 2 398–407

[14] Storme L, De Vos A and Jacobs G 1999 Group theoretical aspects of reversible logic gates J. Univ. Comput. Sci.
5 307–21

Implementing an arbitrary reversible logic gate 3577

[15] De Vos A, Raa B and Storme L 2002 Generating the group of reversible logic gates J. Phys A: Math. Gen. 35
7063–78

[16] Desoete B and De Vos A 2002 A reversible carry-look-ahead adder using control gates Integr. the VLSI J. 33
89–104

[17] Liebeck M, Praeger C and Saxl J 1987 A classification of the maximal subgroups of the finite alternating and
symmetric groups J. Algebra 111 365–83

[18] Devadas S, Ghosh A and Keutzer K 1994 Logic Synthesis (New York: McGraw-Hill)
[19] Schönert M 1992 GAP Comput. Algebra Nederland Nieuwsbrief 9 19–28
[20] http://www-gap.dcs.st-and.ac.uk/˜gap
[21] Miller D, Maslov D and Dueck G 2003 A transformation based algorithm for reversible logic synthesis Proc.

40th Design Automation Conference (Annaheim, June 2003) pp 318–23
[22] Shende V, Prasad A, Markov I and Hayes J 2002 Synthesis of optimal reversible logic circuits Proc. Int.

Workshop on Logic and Synthesis (New Orleans, June 2002) pp 125–30
[23] Shende V, Prasad A, Markov I and Hayes J 2002 Reversible logic circuit synthesis Proc. Int. Conf. on Computer-

Aided Design (San Jose, Nov. 2002) pp 353–60
[24] Dueck G and Maslov D 2003 Reversible function synthesis with minimum garbage outputs Proc. 6th Int. Symp.

on Representation and Methodology of Future Computing Technologies (Trier, March 2003) 154–61
[25] Maslen D and Rockmore D 2000 Double coset decompositions and computational harmonic analysis on groups

J. Fourier Anal. Appl. 6 349–88
[26] Fredkin E and Toffoli T 1982 Conservative logic Int. J. Theor. Phys. 21 219–53
[27] Maslov D and Dueck G 2004 Reversible cascades with minimal garbage IEEE Trans. Comput.-aided Design

Integr Circuits Syst. 23 1497–509
[28] Maitra K 1962 Cascaded switching networks of two-input flexible cells IRE Trans. Electron. Comput. 11 136–43
[29] Sarabi A, Song N, Chrzanowska–Jeske M and Perkowski M 1994 A comprehensible approach to logic synthesis

and physical design for two-dimensional logic arrays Proc. Design Automation Conference 94 (San Diego,
June 1994) pp 321–6

[30] Lee G 1997 Logic synthesis for cellular architecture FPGA using BDD Proc. Asia and South Pacific Design
Automation Conference 97 (Chiba, Jan. 1997) pp 253–8

[31] Mishchenko A and Perkowski M 2002 Logic synthesis of reversible wave cascades Proc. Int. Workshop on
Logic and Synthesis (New Orleans, June 2002) pp 197–202

[32] Gradshteyn I and Ryzhik I 1994 Table of Integrals, Series, and Products 5th edn (Boston: Academic)

